

Patterns of Bat Fatality at Wind Development Facilities

Edward B. Arnett, Bat Conservation International

Biological Diversity: over 1,100 species identified...>one-quarter of the world's mammals...

Broad and unique ecological niches and provide vital ecological services...key pollinators, seed dispersers, and predators of insects...

Big brown bat
$>$ Bats play a critical economic role by protecting crops and reducing use of pesticides

Free-tails estimated to have an average annual value of $\$ 741,000$ to the cotton industry in just an 8-county region in south-central Texas
(Cleveland et al. 2007)

Eco-tourism! Millions of dollars for Austin's local economy alone.

Long-lived, slow reproducing...populations are susceptible to additive mortality factors...

In 2003, between 1,398 and 4,031 bats estimated to have been killed at the Mountaineer Wind Energy Facility in West Virginia

Bats and Wind Energy Cooperative

Bats and Wind Energy Cooperative organized by BCI, AWEA, the US Fish \& Wildlife Service, and the National Renewable Energy Lab (DOE) in late 2003, initiated in May 2004

Organized a technical experts meeting to discuss existing data, information gaps, and set priorities

Conducted intensive studies from 2004 to present on post-construction fatality and bat interactions with turbines, pre-construction assessments, deterrents, and operational mitigation

Findings published in reports posted on website and published in scientific journals

www.batsandwind.org

Events

NWCC Wind Wildlife Research Meeting October 27-29, 2008 Milwaukee, W I Details

Overview
Research
Products
Resources

Featured

Patterns of Bat Fatalities at Wind Energy Facilities in North America (Arnett, et al - 2008)

D Download Publication

Arnett, E. B. , et al. 2008. Patterns of fatality of bats at wind energy facilities in North America. Journal of Wildlife Management 72: 61-78.

Bats Have Not Been Well Studied

Few studies, short duration, other sampling issues
Potential sources of sampling bias (carcass removal, searcher efficiency, habitat variation) have been poorly accounted for...

Past estimates of bat fatality are conditioned on sampling effort...fatality estimates must be interpreted very carefully!

Possible Explanations Why Bats Are Being Killed by Wind Turbines?

- Linear Corridor
- Roost Attraction
- Landscape Attraction
- Low Wind Velocity
- Heat Attraction
- Visual Attraction
- Acoustic Attraction
- Echolocation Failure
- Electromagnetic-Disorientation
- Decompression
- Thermal Inversion

Patterns of Bat Fatality: Extent of the Problem

Bat fatalities have been documented at wind facilities worldwide across a wide range of habitats...
appear to be highest at sites on forested ridges in eastern U.S...but...

Recent studies have found higher than expected bat fatalities in open prairie in Alberta...~11/MW

Mixed agriculture/forest habitats in New York (~15/MW)

Sites with High Fatality Rates

Maple Ridge, NY
Photo: E. Arnett

Buffalo Mountain. TN
Photo: NREL

Stummerview, Alberta

Photo: R Barclay

Mountaneer WV Photo: Kerns

Species of Bats Killed by Turbines

Eleven of the 45 species north of Mexico have been found killed by turbines...

16 species in Mexico...

Fatalities are heavily skewed to migratory tree roosting bats (based on facilities monitored to date)

Species involved in North America
 $$
n=3,974
$$

Little brown bat

Woodward Wind Energy Facility, Oklahoma

Dearth of information...little or no data from the many areas (e.g.,Southwest)

Indiana Bat

To date, no threatened or endangered species has been found at wind facilities...

No federal nexus
but future is uncertain, given projected expansion of wind

Spatial Patterns of Bat Fatality

No consistent spatial pattern from turbine to turbine...

Spatial Patterns of Fatalities

Mountaineer

Meyersdale

Spatial Patterns: Proximity of Turbines to Resources

Temporal Patterns of Bat Fatality Bat fatalities occur primarily in late summer and early fall

Temporal Patterns of Bat Fatality

Some evidence to suggest regional patterns in timing of fatality...perhaps related to migration, weather or food

Hoary Bat

Lower Wind = Higher Bat Fatality

Bat kills also associated with passage of weather fronts

Patterns may be predictable!

Majority of bats killed in PA, TN, WV were on low wind nights; kills negatively related to wind speed

Horn, J., E. B. Arnett, and T. H. Kunz. 2008. Behavioral responses of bats to operating wind turbines. Journal of Wildlife Management 72: 123-132.

Bat fatality is related to weather variables; higher kills during low wind periods

No bats killed at non-moving turbines

Thermal images indicated that bats appear to be attracted to and investigate both moving and non-moving blades

Bat Fatalities at Lit and Unlit Turbines

Mountaineer
Meyersdale

类	Lit	Unlit	Lit	Unlit
\# Turbines	12	32	6	14
Mean Dead	9.3	9.7	11.9	13.2
SE	0.5	0.3	1.7	1.2

L-864
20-40 Flashes Per minute

No difference in fatalities at lit and unlit turbines

Indirect Impacts

- Loss of foraging habitat?
- Loss of roosting habitat?
- Loss of migration corridors?
- To date, there have been no focused, quantitative studies on the impacts of wind energy development on bat foraging, roosting, or migration habitats

Wildlife Fatalities - What's the Context?

The Significance of Bat Fatalities

Species experiencing highest fatalities have little or no protection

Eastern red bats already documented in decline in three mid-western States (Whitaker et al. 2002, Carter et al. 2003, Winhold et al. 2005)

Bats are long-lived, slow reproducing mammals... Turbines are killing prime breeding age adults

While population impacts are unknown, considerable concern about cumulative impacts as wind energy expands...

Can these species of bats sustain such rates of additive mortality \therefore when considering cumulative effects?

Cumulative Impacts ${ }^{1}$: Projected Number of Bat Fatalities/Year for the Mid-Atlantic Highlands in 2020

Bat Species	Fatality Rate	Minimum Projected Bat Fatalities/Year	Maximum P Bat Fatalitie
Hoary	0.289		
Eastern red	0.344	9,542	17,899
Silver-haired	0.052	11,358	21,306
Eastern pipistrelle	0.185	1,717	3,221
Little brown myotis	0.087	6,108	11,458
Northern long-eared	0.006	2,873	5,388
Big brown	0.025	198	372
Unknown	0.011	825	1,548
Total		396	743
		$\mathbf{3 3 , 0 1 7}$	$\mathbf{6 1 , 9 3 5}$

${ }^{1}$ Projections based on the NREL WinDS Model of Installed capacity

MITIGATION OPTIONS

Operational mitigation...
Curtailment during high risk periods that may be predictable

Pre-Construction Assessment.
Determine and avoid high risk areas

Technological..
 Deter or alert the bats...

