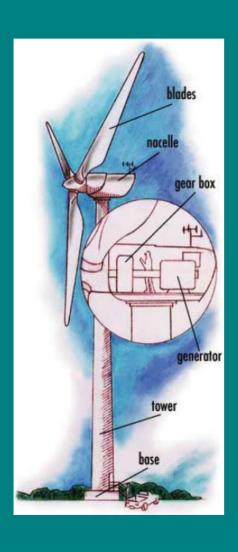
Wind turbines and health. What's the evidence?

Karen Rideout & Constance Bos National Collaborating Centre for Environmental Health

> CIPHI NS/PEI Annual Educational Session March 13, 2009 | Fall River, NS



outline

- What are wind turbines?
- Where are wind turbines?
- The health issues
- Setbacks
- Gaps
- Risk communication

wind farms

- HEIGHT: 80m
- BLADE LENGTH: 40m
- POWER PER TURBINE:2 MW
- WIND SPEED:4-25 m/s for operation
- Rotor speed: 15 rpm
- Tip speed: 62.8 m/s

wind turbines in Canada

- 90 wind farms in Canada; 2369 MW (1% of energy needs)
- NS
 - 18 wind farms
 - 59 MW in place
 - NS Renewable Energy Standards require 5% of electricity from renewables by 2010, 10% by 2013 (requires additional 210 MW by 2010, 510 MW by 2013)
- PEI
 - 6 wind farms
 - 72 MW in place
 - Target of 500 MW by 2013

Source: CanWEA

public health concerns

Photo: Edenfield, Lancashire, UK www.geograph.org.uk

Sound

- Noise levels/intensity
- Low frequency noise
- Variation
- EMF exposure
- Shadow flicker
- Aesthetics
- Icing
- Structural failure
- Safety
- Environmental impacts

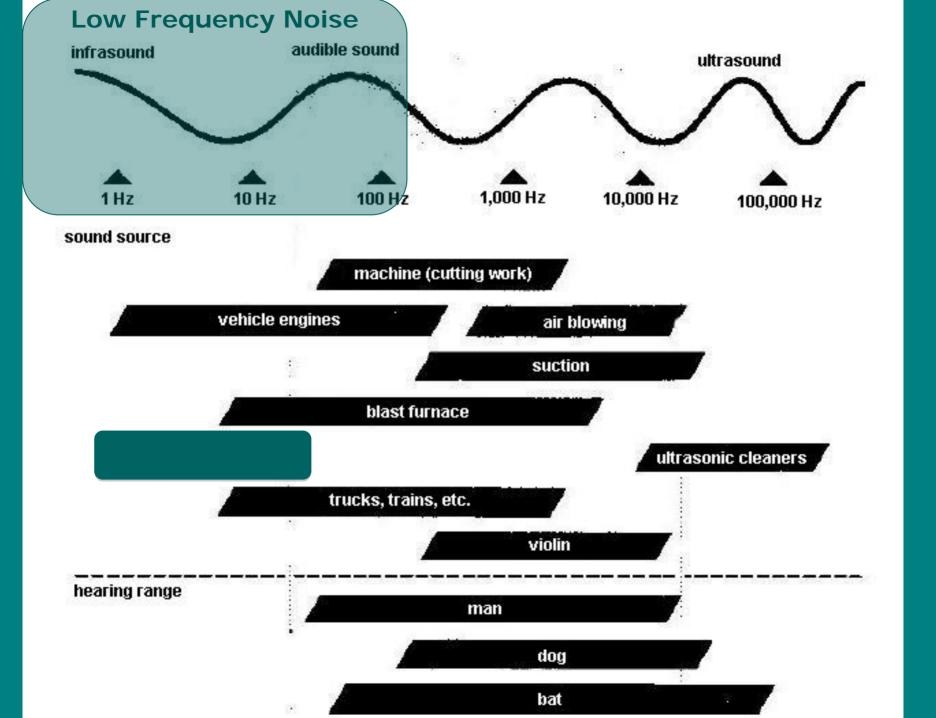
sound

- Sound produced by wind turbines is aerodynamic or mechanical in nature
- "Infrasound" most controversial in terms of health
- Uneven nature of wind turbines ("swoosh swoosh") perceived as more annoying than steady "white noise"

A COMPARISON OF SOUND PRESSURE AND SOUND PRESSURE LEVEL				
Sound Pressure, Pa		Sound Pressure Level, dB		
	20 —	120	Pneumatic Chipper (at 5 ft.)	
Rock-n-Roll Band	10	110	r redinate ompper (at o rt.)	
	5 —		Textile Loom	
Power Lawn Mower	2 —	100	Newspaper Press	
(at operator's ear)	1	90		
Milling Machine (at 4 ft.)	0.5		Diesel Truck 40 mph (at 50 ft.)	
Garbage Disposal (at 3 ft.)	0.2 —	— 80		
Vacuum Cleaner	0.1	70	Passenger Car 50 mph	
Air Conditioning Window Unit (at 25 ft.)	0.05 —	<u></u>	(at 50 ft.) Conversation (at 3 ft.)	
Williad W Offic (ac 25 fc.)	0.01 ==	= 50		
	0.005 —	40	Quiet Room	
	0.002	J	4001 1100111	
	0.0005	30		
0.0002		— 20		
	0.0001	10		
	0.00005 — 0.00002 —			

Wind farm sound at 350m

Source: CCOHS & AWEA

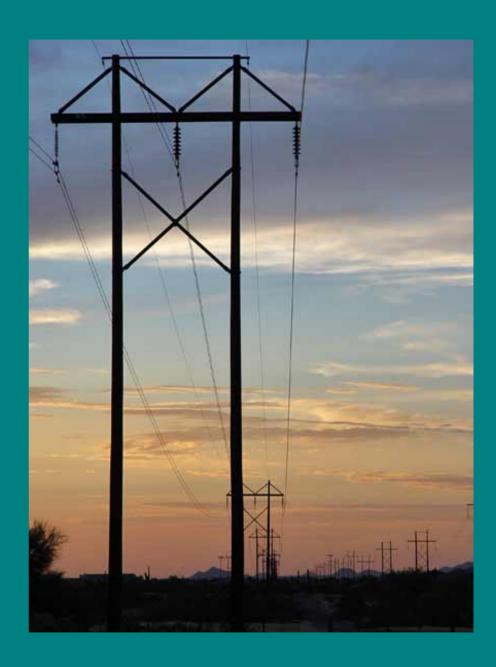

Low frequency and infrasound

Low frequency noise (LFN):

- LFN is sound in the frequencies < 200 Hz
- Infrasound < 20 Hz
- LFN at low levels (<100 dBA) is ubiquitous in the environment
- LFN at higher levels is common in some night clubs

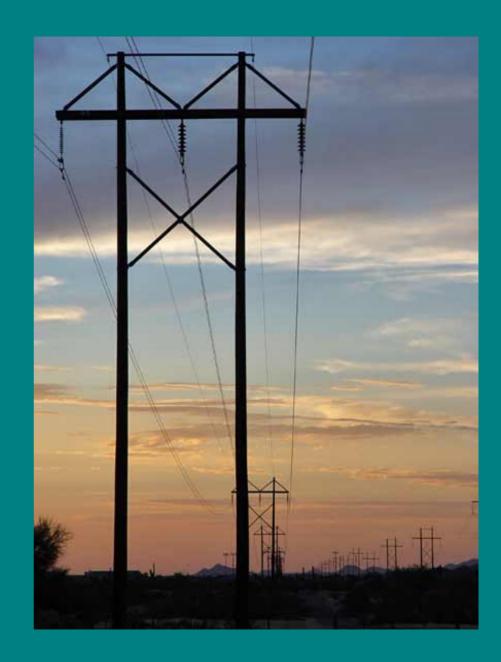
Sensitivity:

- Infrasound is sound in the frequencies below 20 Hertz
- Human hearing is most sensitive between 1000 and 20,000 Hertz
- Human sensitivity to LFN varies


health concerns re LFN

- Potential health effects from chronic exposure to very high levels of LFN
- Vibroacoustic disease (VAD):
 - theoretically full body pathology causing widespread homeostatic imbalances
 - related to chronic exposure to very high levels of LFN (e.g. airline mechanics)
- No published data that confirm the claims of adverse health effects for low-frequency sounds of low pressure (i.e. below 20 Hz and 110 dB)
- Sleep disturbance may lead to health effects

EMF exposure


Four potential sources from wind farms:

- 1. Grid connection lines
- 2. Wind turbine generators
- 3. Electrical transformers
- 4. Underground network cables

EMF exposure

- No scientific consensus on health risks from EMF
 - IARC 2B: Possibly carcinogenic
 - Weak association with childhood leukemia
- EMF concerns not specific to wind energy – all electric transmission
- Buried transmission lines have effectively no electrical charge at the surface

shadow flicker

- Occurs when turbine blades rotate in low-angle sun
 - Large moving shadows on ground
 - Intermittent light reduction indoors
- Depends on sun angle and siting (size, profile/height, direction, turbine density)
 - Buildings SE of turbines most impacted
 - Recommendation of 10× turbine diameter setback

shadow flicker

- Lasts a very short period of time (approx. 30 min) when conditions are present
- Most pronounced at distances from wind turbines less than 300 m (1,000 feet)
- Can cause dizziness and disorientation when inner ear and visual cues disagree

 people with migraine may be more susceptible
- No evidence of health effects
- Aesthetic or nuisance effect

shadow flicker & epilepsy

- People with epilepsy are rarely light sensitive (5%)
- Sensitivity occurs at 16–25 Hz
- Epilepsy Foundation:

 flicker frequencies >10 Hz
 may trigger epileptic
 seizures
- UK study recommends
 <3Hz (Max 3/sec; 60 rpm)
- Blade passage frequency of typical modern wind turbine
 = 0.5 to 1 Hz

aesthetics

PHOTOS: Wikimedia Commons

- Visual impacts are a major concern for those living near wind farms
- Perception of visual impact affects noise perception (Pederson & Larsmann 2008)
- Not a risk to health, but a legitimate concern

icing

• Glaze ice:

- Liquid precipitation or fog/cloud contacts cold surfaces (<0°C)
- Smooth, hard, transparent, highly adhesive
- Significant formation if temp just below freezing, high winds, and large diameter water droplets
- Usually falls shortly after forming; usually falls straight down
- Most likely form of ice in Atlantic region

• Rime ice:

- Cloud contact with cold surfaces at colder temps, usually high elevation
- White, opaque, granular
- Adhesion less strong than glaze ice
- Sometimes thrown, but usually breaks into smaller pieces

Glaze ice from ice storm

Rime ice from frozen fog at high elevation

ice throw & ice shed

- Ice fall from stationary 2 MW turbines estimated at <50 m
- Ice from moving blades mostly 15–100 m from base, with mass up to 1 kg
- European studies have identified a safe distance of 200–250 m
- US study recommends 230–350 m for 1 in 10,000 to 1 in 100,000 strike risk
- Recommended to stop turbines in icing conditions – automatic or manual

structural failure

- 68,000 wind turbines have been installed worldwide over the last 25 years
 - No injuries documented in Ontario as a result of turbine failure
- Documented blade failures:
 - Max reported distance for entire blade = 150 m
 - Max reported distance for blade fragment = 500 m
- Dutch handbook (1980–2001 data):
 - Partial or full blade failure rates range from 1 in 2,400 to 1 in 20,000 turbines per year
- Although rare, failure is extremely hazardous
- Gale force winds?

Table 4. Component reliability and failure rate h⁻¹

Component	Failure rates
Tip break	1.000×10^{-4}
Yaw bearing	1.150×10^{-5}
Blades	1.116×10^{-5}
Bolts	1.116×10^{-5}
Hub	1.116×10^{-5}
Generator	0.769×10^{-6}
Gearbox	0.630×10^{-6}
Parking brakes	2.160×10^{-6}
Tower and anchor bolts	1.000×10^{-7}

Khan M M, Iqbal M T and Khan F 2005 Reliability and condition monitoring of a wind turbine 18th Ann. Canadian Conf. Electrical and Computer Engineering (Saskatchewan, Canada) pp 1978–81.

cold weather

- Ice structural load limits include weight of iced blades
- Cold stress:
 - Steel becomes more brittle
 - Composites shrink unequally
 - Electrical damage
 - Gear damage from changes in oil viscosity
- Snow in nacelle if no barrier present
- Most turbines designed to –20°C

occupational health and safety

- Construction and maintenance work covered by existing Occupational Health and Safety guidelines for heavy equipment construction and work on tall structures
- Maintenance more difficult in icing conditions due to ice on structure and ladders – access to components is more challenging

 Maintenance is dangerous due to height, especially marine wind farms

environmental impacts

Wildlife:

- Resident species
- Migratory species
- Endangered species

Concerns:

- Loss of habitat and/or change in habitat/ vegetative cover
- Mortality due to collision
- Barotrauma (bats)

wind farm setbacks

Shadow flicker:

Recommendation of 10× turbine diameter setback (NZ Meridien Energy)

Sound:

- ON Ministry of Environment (NPC-232):
 40 dBA in rural areas, 45 dBA in others
- At common setback distances, infrasound is at such low levels that it is inaudible with no evidence of health risk

• Ice throw:

- Europe: 200–250 m
- US: 230–350 m = 1 in 10,000 to 1 in 100,000 strike risk
- Generally within noise setbacks

Structural failure:

150–500 m for blade failure

CanWEA proposed setbacks

- Residential
 - Setback for sound usually
 >250 m also protects
 against ice shed
- Roads
 - 1 blade length + 10 m
 - Risk assessment required for towers within 50–200 m of public road
- Property lines
 - 1 blade length + 10 m

Setbacks mostly based on sound levels

gaps

- Long term exposure to low levels of LFN/ infrasound + appropriate assessment methods
- Health effects of turbine-related sleep disturbances should be investigated
- Stress-induced health effects from noise, visual impact, shadow flicker
- Dizziness and migraine from shadow flicker
- Glaze ice throw risks
- Need for specific OHS regulations

conclusions

- Sound: Perceptions vary / No evidence of noiseinduced health effects at levels emitted by wind turbines / Stress and sleep disturbance possible
- EMF & Power Cables: Lower exposure than other electricity generation / Underground cables bury electrical field
- Shadow Flicker: Can be minimized by careful siting, zoning, and screening / Not in frequency range that can induce epileptic seizures

conclusions

- Ice Throw: Generally very low risk outside noise setback distances
- Safety: Follow OHS regulations and good manufacturing practices
- sound + flicker + aesthetics = annoyance + stress
- Minimal evidence for health <u>effects</u>.
 Health <u>concerns</u> are valid and must be addressed.

risk communication Myths or fact?

- Wind turbines are sources of infrasonic and low frequency acoustic energy
- Infrasonic emissions are well below all recognised threshold of perception criteria: even for sensitive receptors
- Energy in the 30-200Hz band may be audible and a small change of level in this frequency range may be perceived as an apparent larger increase of loudness
- Measured noise levels are below recognised onset levels for health effects
- Health concerns regarding wind turbines are valid

karen.rideout@bccdc.ca

www.ncceh.ca www.ccnse.ca